Science database

As a science-driven company, we regularly publish peer-reviewed papers to validate the research we conduct. 

Most recent publications

Short-chain fatty acid administration via water acidifier improves feed efficiency and modulates fecal microbiota in weaned piglets

Swine
This study examined the effect of a water acidifier containing free and buffered short-chain fatty acids (SCFA-WA) on growth performance and microbiota of weaned piglets. In total, 192 male piglets, approximately 4 wk of age, were allocated to 24 pens (12 per treatment) with 8 piglets per pen. The piglets received either regular drinking water (negative control) or drinking water with the acidifier supplied at 2 L/1,000 L. Body weight and feed intake were measured weekly on pen level. During the first 2 wk, daily visual assessment and scoring of the feces was conducted. Fecal samples of three piglets per pen were collected on days 14 and 42 for high-throughput sequencing analysis of the microbiota. Piglets offered SCFA-WA had significantly improved feed efficiency in the third week (P = 0.025) and over the whole study period (days 0 to 42, P = 0.042) compared with piglets in the negative control group, with a strong tendency observed during the first feeding phase (days 0 to 21, P = 0.055). Furthermore, the water acidifier group had a higher water intake than piglets provided with control water during the second feeding phase (days 21 to 42, P = 0.028) and over the whole study period (days 0 to 42, P = 0.043). There was no significant difference in body weight, average daily gain, or average daily feed intake (days 0 to 21, 21 to 42, 0 to 42). Furthermore, there was no overall significant difference in fecal scoring between the treatments. In terms of the fecal microbiota response, piglets offered the water acidifier showed a significantly higher relative abundance (RA) of genus Clostridium sensu stricto 1 and a lower RA of genus Streptococcus compared to the control. Furthermore, the redundancy analysis showed a positive association between improved feed efficiency and daily weight gain and RA of Butyricicoccus and Faecalibacterium. In conclusion, consumption of the water acidifier containing free and buffered SCFA modulated the microbiota and improved feed efficiency in piglets.
by M. M. Lingbeek on 16/11/2021
Read more

Latest Advances in Sow Nutrition during Early Gestation

Swine
In the pig, the establishment and maintenance of luteal function in early gestation is crucial to endometrial function, embryo development, and survival. The level of feed intake has a positive effect on formation of luteal tissue and progesterone secretion by the ovaries in the pre-implantation period, which is important for endometrial remodeling and secretion. These effects are independent of luteinising hormone (LH) and probably driven by metabolic cues, such as insulin and insulin-like growth factor (IGF-1), and seem to support progesterone secretion and delivery to the endometrium, the latter which occurs directly, bypassing the systemic circulation. Even after implantation, a high feed intake seems to improve embryo survival and the maintenance of pregnancy. In this stage, luteal function is LH-dependent, although normal variations in energy intake may not result in pregnancy failure, but may contribute to nutrient supply to the embryos, since in this phase uterine capacity becomes limiting. Feed incidents, however, such as unintended fasting of animals or severe competition for feed, may result in embryo or even pregnancy loss, especially in periods of seasonal infertility. Specific nutrients such as arginine have a role in the vascularisation of the placenta and can improve the uterine capacity in the period after implantation.
by P. Langendijk on 16/09/2021
Read more

Management strategies for improving survival of piglets from hyperprolific sows

Swine
In efforts to improve profitability, sows have been subject to ongoing selection for larger litters. The current dogma is that larger litters improve sow productivity. This review, however, will question the validity of this assumption. It is inescapable that very large litters will have longer farrowing durations, lower average and more variable birth weights, and the sows will have insufficient teats available to feed their piglets. This is a recipe for increased piglet mortality with associated ethical considerations. This review will examine methods employed to address these challenges posed by larger litters in order to improve piglet survival. Producers, however, need a paradigm shift; their objective is not to produce pigs but rather to market kilograms of pork, and one does not necessarily lead to the other.
by R.N. Kirkwood on 06/09/2021
Read more

Animal nutrition strategies and options to reduce the use of antimicrobials in animal production

Across species
Antimicrobial resistance is a global and increasing threat. Stewardship campaigns have been established, and policies implemented, to safeguard the appropriate use of antimicrobials in humans, animals, and plants. Restrictions on their use in animal production are on the agenda worldwide. Producers are investing in measures, involving biosecurity, genetics, health care, farm management, animal welfare, and nutrition, to prevent diseases and minimize the use of antimicrobials. Functional animal nutrition to promote animal health is one of the tools available to decrease the need for antimicrobials in animal production. Nutrition affects the critical functions required for host defence and disease resistance. Animal nutrition strategies should therefore aim to support these host defence systems and reduce the risk of the presence in feed and water of potentially harmful substances, such as mycotoxins, anti-nutritional factors and pathogenic bacteria and other microbes. General dietary measures to promote gastrointestinal tract health include the selective use of a combination of feed additives and feed ingredients to stabilize the intestinal microbiota and support mucosal barrier function. This knowledge, used to establish best practices in animal nutrition, could allow the adoption of strategies to reduce the need for antimicrobials and contain antimicrobial resistance.
by C. Smits on 29/07/2021
Read more

Mixed organic acid alternative to antibiotics improves serum biochemical parameters and intestinal health of weaned piglets

Swine
The primary aim of this experiment was to critically explore the relationship between the different levels of mixed organic acids (MOA) and growth performance, serum antioxidant status and intestinal health of weaned piglets, as well as to investigate the potential possibility of MOA alternative to antibiotics growth promoters (AGP). A total of 180 healthy piglets (Duroc × [Landrace × Yorkshire]; weighing 7.81 ± 1.51 kg each, weaned at d 28) were randomly divided into 5 treatments: 1) basal diet (CON); 2) CON + chlorinomycin (75 mg/kg) + virginiamycin (15 mg/kg) + guitaromycin (50 mg/kg) (AGP); 3) CON + MOA (3,000 mg/kg) (OA1); 4) CON + MOA (5,000 mg/kg) (OA2); 5) CON + MOA (7,000 mg/kg) (OA3). This study design included 6 replicates per treatment with 6 piglets per pen (barrow:gilt = 1:1) and the experiment was separated into phase 1 (d 1 to 14) and phase 2 (d 15 to 28). In phases 1, 2 and overall, compared with the CON, the feed conversion ratio (FCR) was reduced (P < 0.01) and the average daily gain (ADG) was increased (P < 0.05) in piglets supplemented with AGP, OA1 and OA2. The concentration of serum immunoglobulins G (IgG) was improved (P < 0.05) in piglets supplemented with OA2 in phase 2. In the jejunum and ileum, the villus height:crypt depth ratio was significantly increased (P < 0.01) in piglets fed AGP and OA1. The mRNA expression level of claudin-1 and zonula occludens-1 (ZO-1) (P < 0.01) was up-regulated in piglets supplemented with OA1 and OA2. The piglets fed AGP, OA1 and OA2 showed an increase (P < 0.05) in the content of acetate acid and total volatile fatty acids (TVFA) in the cecum, and butyric acid and TVFA in the colon compared with CON. Also, OA1 lowered (P < 0.05) the content of Lachnospiraceae in piglets. These results demonstrated that MOA at 3,000 or 5,000 mg/kg could be an alternative to antibiotics due to the positive effects on performance, immune parameters, and intestinal health of weaned piglets. However, from the results of the quadratic fitting curve, it is inferred that MOA at a dose of 4,000 mg/kg may produce a better effect.
by Jiayu Ma on 15/07/2021
Read more

The role of lactose in weanling pig nutrition: a literature and meta-analysis review

Swine
Lactose plays a crucial role in the growth performance of pigs at weaning because it is a palatable and easily digestible energy source that eases the transition from milk to solid feed. However, the digestibility of lactose declines after weaning due to a reduction in endogenous lactase activity in piglets. As a result, some lactose may be fermented in the gastrointestinal tract of pigs. Fermentation of lactose by intestinal microbiota yields lactic acid and volatile fatty acids, which may positively regulate the intestinal environment and microbiome, resulting in improved gastrointestinal health of weanling pigs. We hypothesize that the prebiotic effect of lactose may play a larger role in weanling pig nutrition as the global feed industry strives to reduce antibiotic usage and pharmacological levels of zinc oxide and supra-nutritional levels of copper. Evidence presented in this review indicates that high dietary lactose improves growth performance of piglets, as well as the growth of beneficial bacteria, particularly Lactobacillus, with the positive effects being more pronounced in the first 2 weeks after weaning. However, the risk of post-weaning diarrhea may increase as pigs get older due to reduced lactase activity, high dietary lactose concentrations, and larger feed intakes, all of which may lead to excessive lactose fermentation in the intestine of the pig. Therefore, dietary lactose levels exert different effects on growth performance and gastrointestinal physiological functions in different feeding phases of weanling pigs. However, no formal recommendation of lactose for weanling pigs has been reported. A meta-analysis approach was used to determine that diets fed to swine should include 20%, 15%, and 0 lactose from d 0–7, d 7–14, and d 14–35 post-weaning, respectively. However, sustainable swine production demands that economics must also be taken into account as lactose and lactose containing ingredients are expensive. Therefore, alternatives to lactose, so called “lactose equivalents” have also been studied in an effort to decrease feed cost while maintaining piglet performance with lower dietary lactose inclusions. In summary, the present review investigated dose-response effects of dietary lactose supplementation to exert positive responses and begin to elucidate its mechanisms of action in post-weaning pig diets. The results may help to replace some or all lactose in the diet of weanling pigs, while improving production economics given the high cost of lactose and availability in some swine production markets.
by Zhao J. on 10/01/2021
Read more

Fibre supplementation to pre-weaning piglet diets did not improve the resilience towards a post-weaning enterotoxigenic E. coli challenge

Swine
Dietary fibre (DF) is implicated in gastrointestinal health of weaned piglets, either through its physiochemical properties, through modulation of gut microbiota and (or) improved gut integrity. We aimed to study the effect of DF enriched supplemental diets fed to suckling piglets ('creep feed') on health and performance after weaning when challenged with an enterotoxigenic E. coli (ETEC). Seventy-two piglets originating from 28 litters had been fed four creep diets, that is a low-fibre control (CON); a diet containing 2% long-chain arabinoxylans from wheat (lc-AXOS) or 5% purified cellulose (CELL) or a diet containing the high fermentable and the low-fermentable fibre source (i.e. 2% lc-AXOS and 5% CELL). Upon weaning, piglets were individually housed and all fed the same diet. On days 7, 8 and 9, animals received an oral dose of ETEC (5 ml containing 107 to 108 CFU/ml). Besides growth performance, faecal and skin scores were recorded daily. Gut permeability was assessed by urinary excretion of Co-EDTA prior and post-ETEC challenge. Repeated measures in time were statistically evaluated with generalized linear mixed models. We used a binominal distribution for evaluating the faecal and skin scores. Feed intake and body weight gain did not differ between treatments (p > .05). Piglets on CELL decreased gain:feed ratio in week 2 + 3 week compared to CON (p = .035). Prior to ETEC challenge, gut permeability tended to increase for lc-AXOS (p = .092). Moreover, lc-AXOS as main effect increased intestinal permeability before ETEC challenge (p = .013), whereas the low-fermentable fibre lead to elevated intestinal permeability after ETEC challenge (p = .014). The incidence of diarrhoea was higher for lc-AXOS + CELL compared with lc-AXOS (p = .036), while skin condition was unaffected. In conclusion, neither the high fermentable nor the low-fermentable fibre source improved post-weaning growth or gastrointestinal health of the piglets.
by H. van Hees on 25/11/2020
Read more

Impact of Yeast-Derived β-Glucans on the Porcine Gut Microbiota and Immune System in Early Life

Swine
Piglets are susceptible to infections in early life and around weaning due to rapid environmental and dietary changes. A compelling target to improve pig health in early life is diet, as it constitutes a pivotal determinant of gut microbial colonization and maturation of the host’s immune system. In the present study, we investigated how supplementation of yeast-derived β-glucans affects the gut microbiota and immune function pre- and post-weaning, and how these complex systems develop over time. From day two after birth until two weeks after weaning, piglets received yeast-derived β-glucans or a control treatment orally and were subsequently vaccinated against Salmonella Typhimurium. Faeces, digesta, blood, and tissue samples were collected to study gut microbiota composition and immune function. Overall, yeast-derived β-glucans did not affect the vaccination response, and only modest effects on faecal microbiota composition and immune parameters were observed, primarily before weaning. This study demonstrates that the pre-weaning period offers a ‘window of opportunity’ to alter the gut microbiota and immune system through diet. However, the observed changes were modest, and any long-lasting effects of yeast-derived β-glucans remain to be elucidated.
by H. de Vries on 12/10/2020
Read more

Effects of two zinc supplementation levels and two zinc and copper sources with different solubility characteristics on the growth performance, carcass characteristics and digestibility of growing‐finishing pigs

Swine
The present study was conducted to evaluate the effect of two Zn supplemented levels and two Zn and Cu sources (sulphate and hydroxychloride) on growing‐finishing pigs. An in vitro study and an in vivo study were conducted. In the in vitro study, Zn solubility from each source at different Zn supplementation levels was evaluated, as well as the phytic phosphorus (PP) solubility derived from the interaction or not with phytic acid at similar conditions to those found in digestive tract. The most critical interaction of Zn with phytic acid was at pH 6.5 and with Zn sulphate, resulting in the reduction in PP solubility. In the in vivo experiment, a total of 444 pigs ([Duroc × Landrace]×Pietrain; initial BW: 18.7 ± 0.20 kg) were allotted to 36 pens in a randomized complete block design (2 × 2) factorial arrangement with two Zn and Cu sources and two Zn supplemental levels (20 and 80 mg/kg). The Cu supplementation was fixed at 15 mg/kg for all diets. There was no effect of the interaction between mineral source × Zn level or Zn level on growth performance or carcass characteristics (p > .10). Apparent total digestibility of Zn and Cu along with carcass yield was higher for pigs fed hydroxychloride than pigs fed the sulphate counterparts (p < .05). Feeding low levels of Zn decreased Zn (45.5%; p < .0001) and Cu(18.5%; p = .018) faecal excretion. In conclusion, under commercial conditions, feeding growing‐finishing pigs with Zn levels below those established by the European Union regulation did not affect growth performance and carcass characteristics. Reducing dietary mineral (Zn and Cu) diet content resulted in a lower faecal mineral excretion. Pigs fed sulphate minerals had an improved performance during grower period, while pigs fed hydroxychloride minerals showed an improved performance during finishing period and a greater carcass yield and mineral digestibility than those fed sulphates.
by S. Villagómez-Estrada on 22/09/2020
Read more

Other sections:

Teaming up for world-class research and development
Discover Trouw Nutrition’s research facilities around the globe