Science database

As a science-driven company, we regularly publish peer-reviewed papers to validate the research we conduct. 

Most recent publications
Across species
Antimicrobial resistance is a global and increasing threat. Stewardship campaigns have been established, and policies implemented, to safeguard the appropriate use of antimicrobials in humans, animals, and plants. Restrictions on their use in animal production are on the agenda worldwide. Producers are investing in measures, involving biosecurity, genetics, health care, farm management, animal welfare, and nutrition, to prevent diseases and minimize the use of antimicrobials. Functional animal nutrition to promote animal health is one of the tools available to decrease the need for antimicrobials in animal production. Nutrition affects the critical functions required for host defence and disease resistance. Animal nutrition strategies should therefore aim to support these host defence systems and reduce the risk of the presence in feed and water of potentially harmful substances, such as mycotoxins, anti-nutritional factors and pathogenic bacteria and other microbes. General dietary measures to promote gastrointestinal tract health include the selective use of a combination of feed additives and feed ingredients to stabilize the intestinal microbiota and support mucosal barrier function. This knowledge, used to establish best practices in animal nutrition, could allow the adoption of strategies to reduce the need for antimicrobials and contain antimicrobial resistance.
Read more

Effect of Dietary Supplementation With Mixed Organic Acids on Immune Function, Antioxidative Characteristics, Digestive Enzymes Activity, and Intestinal Health in Broiler Chickens

Scientific Journal
The purpose of this study was to explore the effect of dietary supplementation with mixed organic acids on intestinal health, enzyme activity, and antioxidative characteristics in broilers. A total of 192 1-day-old chicks were evenly allocated to three experimental groups with eight replicates, a basal diet with 0 (Control), 3,000 mg/kg (LMOA), 6,000 mg/kg (HMOA) mixed organic acid. The tissue and serum samples were gathered on 21 and 42 d of the experiment. An increased (P < 0.05) concentration of IgA, D-lactate (D-LA), and interleukin-10 (IL-10) in the serum of broilers diets with HMOA was observed. The levels of total antioxidant capacity (T-AOC) and catalase activity (CAT) in serum were enhanced (P < 0.05) with dietary and mixed organic acid, respectively, and increased (P < 0.05) content of superoxide dismutase (SOD) and CAT in the duodenum of broilers diets with LMOA was noticed. Also, LMOA decreased (P < 0.05) the pH value of the duodenum and enhanced (P < 0.05) the amylase activity of the pancreas, the tight junction protein (mainly Claudin-1, Claudin-2, and ZO-1) in the duodenum of broilers fed with mixed organic acid were promoted (P < 0.05), and the LMOA group performed better in the small intestine. In cecum microbiota, LMOA and HMOA modulated the structure of microbiota and mainly reduced the relative abundance of Escherichia coli. In brief, dietary supplemented mixed organic acid improved the health status of broilers by promoting the immune function, enhancing the antioxidative characteristics and tight junction proteins expression as well as cecum microbiota. However, LMOA groups may be a better fit considering the comprehensive effects of experiments and economic costs.
by Jiayu Ma on 16.09.2021
Read more

Latest Advances in Sow Nutrition during Early Gestation

Scientific Journal
In the pig, the establishment and maintenance of luteal function in early gestation is crucial to endometrial function, embryo development, and survival. The level of feed intake has a positive effect on formation of luteal tissue and progesterone secretion by the ovaries in the pre-implantation period, which is important for endometrial remodeling and secretion. These effects are independent of luteinising hormone (LH) and probably driven by metabolic cues, such as insulin and insulin-like growth factor (IGF-1), and seem to support progesterone secretion and delivery to the endometrium, the latter which occurs directly, bypassing the systemic circulation. Even after implantation, a high feed intake seems to improve embryo survival and the maintenance of pregnancy. In this stage, luteal function is LH-dependent, although normal variations in energy intake may not result in pregnancy failure, but may contribute to nutrient supply to the embryos, since in this phase uterine capacity becomes limiting. Feed incidents, however, such as unintended fasting of animals or severe competition for feed, may result in embryo or even pregnancy loss, especially in periods of seasonal infertility. Specific nutrients such as arginine have a role in the vascularisation of the placenta and can improve the uterine capacity in the period after implantation.
by P. Langendijk on 16.09.2021
Read more

Performance and greenhouse gas emission of Nellore and F1 Angus × Nellore yearling bulls in tropical production systems during backgrounding and finishing

Scientific Journal
This study investigated the performance, carcass traits, and greenhouse gas emission of Nellore and F1 Angus × Nellore yearling bulls raised under two [lenient (S1) and intensified (S2)] production systems during the backgrounding and finishing phases. S1 was practiced on a 18.6 ha palisade grass pasture, divided into eight paddocks, which was not fertilized and managed using continuous stocking at a constant rate of two animals per hectare during backgrounding. Then, 20 Nellore [initial body weight (BWi), 277±13 kg; initial age, 15.2±1.1 months] and 20 F1 Angus × Nellore (BWi, 304±21 kg; initial age, 15.8±0.44 months) yearling bulls were randomly allocated to four paddocks for each breed. During finishing, animals remained on the pasture and received high supplementation (at rate of 2.0 kg•100 kg−1 BW). S2 was practiced on a 11.4 ha palisade grass pasture, divided into six paddocks, which was fertilized (150 kg N•ha−1•year−1) and managed using continuous stocking at variables rates during backgrounding. Then, 24 Nellore (BWi, 288±16 kg; initial age, 15.6±0.65 months) and 24 F1 Angus × Nellore (BWi, 325±18 kg; initial age, 15.8±0.42 months) yearling bulls were randomly allocated to three paddocks for each breed. During finishing, the bulls were moved to feedlots. During backgrounding, F1 Angus × Nellore bulls in S2 achieved the highest average daily gain (ADG) and final shrunk body weight (SBWf), whereas Nellore bulls in S1 achieved the lowest ADG and SBWf. During finishing, ADG and SBWf were greater in S2 than in S1 as well as for F1 Angus × Nellore bulls than for Nellore bulls. From the beginning of backgrounding until the end of finishing, the ribeye area of F1 Angus × Nellore bulls in S2 was larger than that of other bulls. The greatest backfat deposition occurred during finishing, resulting in greater backfat thickness of bulls in S2 than that of bulls in S1. The carbon footprint of F1 Angus × Nellore bulls in S2 (10.8 kg•CO2e•kg−1 carcass) was similar to that of Nellore bulls in S1, but it was approximately 13% and 11.5% lower than that of Nellore bulls in S2 and F1 Angus × Nellore bulls in S1, respectively. This study demonstrated that the enhancement of productivity through improving genetic merit and pasture management is a suitable strategy to reduce environmental impact and achieve environmental sustainability.
by Erick Escobar Dallantonia on 16.09.2021
Read more

Management strategies for improving survival of piglets from hyperprolific sows

Scientific Journal
In efforts to improve profitability, sows have been subject to ongoing selection for larger litters. The current dogma is that larger litters improve sow productivity. This review, however, will question the validity of this assumption. It is inescapable that very large litters will have longer farrowing durations, lower average and more variable birth weights, and the sows will have insufficient teats available to feed their piglets. This is a recipe for increased piglet mortality with associated ethical considerations. This review will examine methods employed to address these challenges posed by larger litters in order to improve piglet survival. Producers, however, need a paradigm shift; their objective is not to produce pigs but rather to market kilograms of pork, and one does not necessarily lead to the other.
by R.N. Kirkwood on 06.09.2021
Read more

Mixed organic acid alternative to antibiotics improves serum biochemical parameters and intestinal health of weaned piglets

Swine
The primary aim of this experiment was to critically explore the relationship between the different levels of mixed organic acids (MOA) and growth performance, serum antioxidant status and intestinal health of weaned piglets, as well as to investigate the potential possibility of MOA alternative to antibiotics growth promoters (AGP). A total of 180 healthy piglets (Duroc × [Landrace × Yorkshire]; weighing 7.81 ± 1.51 kg each, weaned at d 28) were randomly divided into 5 treatments: 1) basal diet (CON); 2) CON + chlorinomycin (75 mg/kg) + virginiamycin (15 mg/kg) + guitaromycin (50 mg/kg) (AGP); 3) CON + MOA (3,000 mg/kg) (OA1); 4) CON + MOA (5,000 mg/kg) (OA2); 5) CON + MOA (7,000 mg/kg) (OA3). This study design included 6 replicates per treatment with 6 piglets per pen (barrow:gilt = 1:1) and the experiment was separated into phase 1 (d 1 to 14) and phase 2 (d 15 to 28). In phases 1, 2 and overall, compared with the CON, the feed conversion ratio (FCR) was reduced (P < 0.01) and the average daily gain (ADG) was increased (P < 0.05) in piglets supplemented with AGP, OA1 and OA2. The concentration of serum immunoglobulins G (IgG) was improved (P < 0.05) in piglets supplemented with OA2 in phase 2. In the jejunum and ileum, the villus height:crypt depth ratio was significantly increased (P < 0.01) in piglets fed AGP and OA1. The mRNA expression level of claudin-1 and zonula occludens-1 (ZO-1) (P < 0.01) was up-regulated in piglets supplemented with OA1 and OA2. The piglets fed AGP, OA1 and OA2 showed an increase (P < 0.05) in the content of acetate acid and total volatile fatty acids (TVFA) in the cecum, and butyric acid and TVFA in the colon compared with CON. Also, OA1 lowered (P < 0.05) the content of Lachnospiraceae in piglets. These results demonstrated that MOA at 3,000 or 5,000 mg/kg could be an alternative to antibiotics due to the positive effects on performance, immune parameters, and intestinal health of weaned piglets. However, from the results of the quadratic fitting curve, it is inferred that MOA at a dose of 4,000 mg/kg may produce a better effect.
by Jiayu Ma on 15.07.2021
Read more

Dietary protein oscillation: Effects on feed intake, lactation performance, and milk nitrogen efficiency in lactating dairy cows

Ruminants
Limited research with growing ruminants indicates that oscillating (OS) dietary crude protein (CP) concentration may improve nitrogen use efficiency (NUE). Our aim was to determine if a total mixed ration (TMR) based on OS CP (48-h phases of 13.4% and 16.5% CP, respectively) would increase NUE of lactating dairy cows compared with a static CP TMR (ST; 14.9% CP). The experiment was a randomized complete block design with 50 cows [150 ± 61 (mean ± SD) d in milk]. Cows were blocked by parity, days in milk, and milk protein yield. On average, diets were equal in composition over the total experiment. Cows were milked twice daily, and 8 milk samples were collected in each 4-d period. Each 48 h of low-CP (LP) and high-CP (HP) TMR offered to OS cows corresponded to milk collected at milkings 1 to 4 and 5 to 8, respectively. Dry matter intake (mean = 25.5 kg/d for both treatment groups); yields of milk (mean = 31.5 kg/d for both treatment groups), protein, fat, lactose, and fat- and protein-corrected milk (mean = 33.6 kg/d for both treatment groups); and milk concentration of protein, fat, and lactose did not differ between treatments. However, milk urea concentration was higher for OS compared with ST (12.2 vs. 11.3 mg/dL). Body weight, body condition score, NUE, and feed efficiency were unaffected by OS. Apparent total-tract digestibility of dry matter (695 vs. 677 g/kg), organic matter (714 vs. 697 g/kg), CP (624 vs. 594 g/kg), neutral detergent fiber (530 vs. 499 g/kg), and starch (976 vs. 973 g/kg) were higher for OS than for ST cows. Cows in OS responded transiently, and regression analysis of differences within block over time revealed changes in yield of milk (−531 g/d), milk protein (−25.6 g/d), and milk lactose (−16.7 g/d) in LP. Opposite effects were observed for yield of milk (+612 g/d), milk protein (+28.8 g/d), and milk lactose (+28.0 g/d) during HP. Changes in concentrations of milk protein (−0.050%/d), lactose (+0.030%/d), and urea (−3.0 mg/dL per day) during LP, and in milk lactose (−0.024%/d) and urea (+4.3 mg/dL per day) during HP, were observed. Milk yield, lactose yield, and protein yield were lower for OS than ST cows at the last milking of LP and at the first milking of HP. Milk urea concentration did not show such a lag and was lower in the last 2 milkings of LP, and higher in the last 3 milkings of HP, in OS compared with ST cows. Overall, performance and NUE were unaffected by OS treatment, but apparent total-tract digestibility and milk urea concentration increased, and transient effects on milk yield and composition occurred in OS cows.
by R. Rauch on 08.07.2021
Read more

Proteomic Analysis of Liver from Finishing Beef Cattle Supplemented with a Rumen-Protected B-Vitamin Blend and Hydroxy Trace Minerals

Ruminants
Vitamin B and trace minerals are crucial molecular signals involved in many biological pathways; however, their bioavailability is compromised in high-producing ruminant animals. So far, studies have mainly focused on the effects of these micronutrients on animal performance, but their use in a rumen-protected form and their impact on liver metabolism in finishing beef cattle is poorly known. We used a shotgun proteomic approach combined with biological network analyses to assess the effects of a rumen-protected B-vitamin blend, as well as those of hydroxy trace minerals, on the hepatic proteome. A total of 20 non-castrated Nellore males with 353 ± 43 kg of initial body weight were randomly assigned to one of the following treatments: CTRL—inorganic trace minerals without supplementation of a protected vitamin B blend, or SUP—supplementation of hydroxy trace minerals and a protected vitamin B blend. All animals were fed the same amount of the experimental diet for 106 days, and liver biopsies were performed at the end of the experimental period. Supplemented animals showed 37 up-regulated proteins (p < 0.10), and the enrichment analysis revealed that these proteins were involved in protein folding (p = 0.04), mitochondrial respiratory chain complex I (p = 0.01) and IV (p = 0.01), chaperonin-containing T-complex 2 (p = 0.01), glutathione metabolism (p < 0.01), and other aspects linked to oxidative-stress responses. These results indicate that rumen-protected vitamin B and hydroxy trace mineral supplementation during the finishing phase alters the abundance of proteins associated with the electron transport chain and other oxidation–reduction pathways, boosting the production of reactive oxygen species, which appear to modulate proteins linked to oxidative-damage responses to maintain cellular homeostasis.
28.06.2021
Read more

Effect of L-glutamic acid N,N-diacetic acid on the availability of dietary zinc in broiler chickens

Poultry
Chelating agents can be used to improve the nutritional availability of trace minerals within the gastrointestinal tract. This study was conducted to determine the effect of a novel chelating agents, L-glutamic acid N,N-diacetic acid (GLDA), a biodegradable alternative to ethylenediaminetetraacetic acid on the nutritional bioavailability of zinc in broilers. Twelve dietary treatments were allocated to 96 pens in a randomized block design. Pens contained 10 Ross 308 male broilers in a factorial design with 6 incremental zinc levels (40, 45, 50, 60, 80, and 120 ppm of total Zn), with and without inclusion of GLDA (0 and 100 ppm) as respective factors. Experimental diets were supplied from day 7 to 21/22 and serum, liver and tibia Zn content were determined in 3 birds per pen. Growth performance and liver characteristics were not affected by dietary treatments, but both supplemental Zn and GLDA enhanced tibia and serum zinc concentration. The positive effect of GLDA was observed at all levels of the dietary Zn addition. The amount of zinc needed to reach 95% of the asymptotic Zn response was determined using nonlinear regression. When GLDA was included in the diet, based on tibia Zn, the same Zn status was achieved with a 19 ppm smaller Zn dose while based on serum Zn this was 27 ppm less Zn. Dietary GLDA reduces supplemental Zn needs to fulfill nutritional demands as defined by tibia Zn and serum Zn response. Considering the positive effect on the nutritional availability of Zn in broilers, GLDA presents an opportunity as biodegradable additive, to reduce Zn supplementation to livestock and thereby reducing Zn excretion into the environment, while fulfilling the nutrition Zn needs of farmed animals.
by G. M. Boerboom on 04.02.2021
Read more

Efficacy of l-glutamic acid, N,N-diacetic acid to improve the dietary trace mineral bioavailability in broilers

Poultry
Trace minerals are commonly supplemented in the diets of farmed animals in levels exceeding biological requirements, resulting in extensive fecal excretion and environmental losses. Chelation of trace metal supplements with ethylenediaminetetraacetic acid (EDTA) can mitigate the effects of dietary antagonists by preserving the solubility of trace minerals. Lack of EDTA biodegradability, however, is of environmental concern. l-Glutamic acid, N,N-diacetic acid (GLDA) is a readily biodegradable chelating agent that could be used as a suitable alternative to EDTA. The latter was tested in sequential dose–response experiments in broiler chickens. Study 1 compared the effect of EDTA and GLDA in broilers on supplemental zinc availability at three levels of added zinc (5, 10, and 20 ppm) fed alone or in combination with molar amounts of GLDA or EDTA equivalent to chelate the added zinc, including negative (no supplemental zinc) and positive (80 ppm added zinc) control treatments. Study 2 quantified the effect of GLDA on the availability of native trace mineral feed content in a basal diet containing no supplemental minerals and supplemented with three levels of GLDA (54, 108, and 216 ppm). In study 1, serum and tibia Zn clearly responded to the increasing doses of dietary zinc with a significant response to the presence of EDTA and GLDA (P < 0.05). These results are also indicative of the equivalent nutritional properties between GLDA and EDTA. In study 2, zinc levels in serum and tibia were also increased with the addition of GLDA to a basal diet lacking supplemental trace minerals, where serum zinc levels were 60% higher at the 216 ppm inclusion level. Similar to the reported effects of EDTA, these studies demonstrate that dietary GLDA may have enhanced zinc solubility in the gastrointestinal tract and subsequently enhanced availability for absorption, resulting in improved nutritional zinc status in zinc-deficient diets. As such, GLDA can be an effective nutritional tool to reduce supplemental zinc levels in broiler diets, thereby maintaining health and performance while reducing the environmental footprint of food-producing animals.
by G. M. Boerboom on 04.02.2021
Read more

Other sections:

Teaming up for world-class research and development
Discover Trouw Nutrition’s research facilities around the globe