Diet and stomach characteristics of feral pigs: implications for farmed piglets

Abstract

Evaluation of the diet of the pig (Sus scrofa) in natural settings may provide new views on diet optimization for growth and development of commercially raised piglets under farm conditions. A field study was conducted to gain insight in the diet and stomach characteristics of feral piglets. Forty animals (body weight: 4.6 ± 1.37 kg) were collected from the Bahía Samborombón (Buenos Aires, Argentina). Stomachs were weighed after storage in formalin and the particle size distribution of their contents was determined by wet sieving. Diet items present in their stomachs were classified and their proportional weight and relative abundance was calculated. Based on their dentition, 5, 16 and 19 piglets were approximately 1, 3–6 and 6–16 weeks of age respectively. Vegetable matter (mainly ‘leaves and stems’) was predominantly present in 39 animals. It represented on average 83 ± 36.4% of total stomach contents by weight. The stomachs of 12 piglets contained curd and represented on average 16 ± 35.1% by weight. Other diet items were less abundant or absent. The proportion of stomach particles retained were 24%, 13%, 22%, 13% and 28% for sieves with mesh sizes of 2000, 1000, 420, 210 and <210 µm respectively. For comparison, we used data of farmed piglets of similar age and fed a nutrient-dense, finely ground diet. Feral piglets' relative empty stomach weights increased with age (p < 0.050), whereas this was not the case for farmed piglets. Relative stomach contents weight increased significantly with age only for farmed piglets (p < 0.050). We infer from our data that feral suckling piglets consumed a variety of non-milk items, mainly consisting of vegetable material with a coarse particle size from their first week in life onwards. Their diet is associated with an enhanced stomach development compared to those of farmed piglets.

Related articles

  • journal of animal physiology
    Evaluation of the diet of the pig (Sus scrofa) in natural settings may provide new views on diet optimization for growth and development of commercially raised piglets under farm conditions. A field study was conducted to gain insight in the diet and stomach characteristics of feral piglets. Forty animals (body weight: 4.6 ± 1.37 kg) were collected from the Bahía Samborombón (Buenos Aires, Argentina). Stomachs were weighed after storage in formalin and the particle size distribution of their contents was determined by wet sieving. Diet items present in their stomachs were classified and their proportional weight and relative abundance was calculated. Based on their dentition, 5, 16 and 19 piglets were approximately 1, 3–6 and 6–16 weeks of age respectively. Vegetable matter (mainly ‘leaves and stems’) was predominantly present in 39 animals. It represented on average 83 ± 36.4% of total stomach contents by weight. The stomachs of 12 piglets contained curd and represented on average 16 ± 35.1% by weight. Other diet items were less abundant or absent. The proportion of stomach particles retained were 24%, 13%, 22%, 13% and 28% for sieves with mesh sizes of 2000, 1000, 420, 210 and <210 µm respectively. For comparison, we used data of farmed piglets of similar age and fed a nutrient-dense, finely ground diet. Feral piglets' relative empty stomach weights increased with age (p < 0.050), whereas this was not the case for farmed piglets. Relative stomach contents weight increased significantly with age only for farmed piglets (p < 0.050). We infer from our data that feral suckling piglets consumed a variety of non-milk items, mainly consisting of vegetable material with a coarse particle size from their first week in life onwards. Their diet is associated with an enhanced stomach development compared to those of farmed piglets.
  • plos one logo
    Inclusion of additive blends is a common dietary strategy to manage post-weaning diarrhea and performance in piglets. However, there is limited mechanistic data on how these additives improve outcomes during this period. To evaluate the effects of Presan FX (MCOA) on the intestinal microbiota and metabolome, diets with or without 0.2% MCOA were compared. Pigs fed MCOA showed improved whole-body metabolism 7 days post-weaning, with decreased (P < 0.05) creatine, creatinine and β-hydroxybutyrate. Alterations in bile-associated metabolites and cholic acid were also observed at the same time-point (P < 0.05), suggesting MCOA increased bile acid production and secretion. Increased cholic acid was accompanied by increased tryptophan metabolites including indole-3-propionic acid (IPA) in systemic circulation (P = 0.004). An accompanying tendency toward increased Lactobacillus sp. in the small intestine was observed (P = 0.05). Many lactobacilli have bile acid tolerance mechanisms and contribute to production of IPA, suggesting increased bile acid production resulted in increased abundance of lactobacilli capable of tryptophan fermentation. Tryptophan metabolism is associated with the mature pig microbiota and many tryptophan metabolites such as IPA are considered beneficial to gut barrier function. In conclusion, MCOA may help maintain tissue metabolism and aid in microbiota re-assembly through bile acid production and secretion.
  • Dietary L-glutamic acid N,N-diacetic acid improves short-term maintenance
    This study compared the Zn response in selected tissues of weaned piglets fed L-glutamic acid, N,N-diacetic acid (GLDA), while challenged with short-term subclinical Zn deficiency (SZD). During a total experimental period of eight days, 96 piglets were fed restrictively (450 g/d) a high phytate (9 g/kg) diet containing added Zn at 0, 5, 10, 15, 20, 25, 45 and 75 mg/kg with and without 200 mg/kg of GLDA. No animals showed signs of clinical Zn deficiency and no phenotypical differences were observed. Broken line analysis of Zn status parameters such as liver Zn and apparently absorbed Zn indicated that the gross Zn requirement threshold was around 55 mg/kg diet. Supplementation of Zn above this threshold led to a saturation of the response in apparently absorbed Zn and linear increase in liver Zn. Bone and serum Zn responded to the dose in a linear fashion, likely d
    by G. M. Boerboom on