Blood calcium dynamics in cows receiving an aqueous calcium suspension for voluntary consumption or a calcium bolus following parturition

Juliette N. Wilms1, Jean-Baptiste Daniel1, Javier Martín-Tereso1, Arie Klop2, Roselinde Goselink2, Yanming Han1 and Sandra van Kuijk1

1Trouw Nutrition R&D, PO Box 299, 3800 AG, Amersfoort, the Netherlands

2Wageningen Livestock Research, PO Box 338, 6700 AH, Wageningen, the Netherlands

  • Ruminants
  • Dairy
  • 2022
  • Open Access
Journal of Dairy Research , First View , pp. 1 - 8 DOI: https://doi.org/10.1017/S002202992200019X

J. B. Daniel, J. Martín-Tereso, Arie Klop, Roselinde Goselink, Yanming Han, S. J. A. van Kuijk

by J. N. Wilms on
Read more about blood calcium dynamics in cows
Blood calcium dynamics in cows

Abstract

The form of oral calcium (Ca) supplement and the Ca source influence Ca absorption dynamics resulting in different postpartum calcemia. The objective of this study was to investigate whether an oral Ca supplement (mainly CaCO3) offered for voluntary consumption would maintain or increase postpartum blood Ca to the same degree as a Ca bolus (mainly CaCl2) providing an equivalent dose of a Ca. A total of 72 Holstein cows were blocked by expected parturition date and parity. Within each block of 3 animals, cows were randomly assigned to one of three treatments, including an oral Ca supplement offered for voluntary consumption (Ca-drink, n = 23), an oral Ca bolus (Ca-bolus, n = 24), or an untreated group (CON, n = 25). Treatments were administered once within 15 min postpartum. The Ca-drink provided 45 g of Ca (CaCO3 source) and was mixed in 20 L of lukewarm water and offered to cows for 30 min. The Ca-bolus provided 43 g of Ca (71% from CaCl2 and 29% from CaSO4) and was administered once. Both Ca-bolus and CON cows received 20-l of lukewarm water at parturition to standardize the volume of fluids (Ca-drink or 20-l lukewarm water) offered at parturition. Dairy cows offered Ca-drink had a 28% higher fluid consumption than Ca-bolus and CON cows. Milk yield and milk composition expressed in percentage protein, fat, lactose, and urea did not differ, whilst there was a small but significant increase in DMI in cows receiving the Ca-drink compared to CON, while Ca-bolus did not differ from other groups. This was consistent with reduced BW losses between week 1 and 3 in cows receiving the Ca-drink suspension. Treatment by time interactions were present for blood Ca, glucose, and urea concentrations. Blood Ca was relatively stable in Ca-drink cows, while higher fluctuations were observed in Ca-bolus cows. In Ca-bolus cows, blood Ca increased from 15 min to 6 h, decreased from 6 to 24 h, and finally increased again from 24 to 48 h. At 24 h post administration, blood Ca was greater in cows receiving the Ca-drink than cows receiving the Ca-bolus. Blood glucose was greater in Ca-bolus cows at 15 min after treatment administration compared with Ca-bolus and CON, while blood urea was higher in CON than Ca-drink and Ca-bolus throughout the sampling period. These results indicate that voluntary oral Ca resulted in a relatively stable calcemia, whereas higher fluctuations were observed in cows receiving the Ca-bolus. Due to a lack of differences between Ca-drink and Ca-bolus compared with CON, it is not possible to conclude regarding the efficacy in maintaining postpartum blood Ca.

Related articles

  • Unlocking the limitations of urea supply in ruminant diets
    Ruminants have evolved with the capability to recycle endogenous urea to the gastrointestinal tract (GIT). Ruminal ammonia derived from urea recycling makes a net contribution to digestible N flow if it is used to synthesise microbial protein. The dynamics of urea recycling and its quantitative importance to the N economy of ruminants are affected by dietary and physiological factors. In general, the transfer of endogenous urea to the GIT is related positively to blood urea concentration and rumen-fermentable energy supply and negatively to ruminal ammonia concentration. After consumption of a meal rich in rumen-degradable N, ruminal ammonia concentrations peak and can exceed the rate of carbohydrate fermentation, resulting in inefficient ammonia capture by microbes. These periods are characterised by greater ruminal ammonia efflux and reduced urea influx. A low ruminal ammonia concentration over time can stimulate recycling of endogenous urea-N to the rumen and its capture into microbial protein and reduce N excretion.
    by K. Nichols on
    High solubility of certain trace minerals (TM) in the rumen can alter nutrient digestibility and fermentation. The objectives of the present studies were to determine the effects of TM source on 1) nutrient digestibility and ruminal fermentation, 2) concentrations of soluble Cu, Zn, and Mn in the rumen following a pulse dose of TM, and 3) Cu, Zn, and Mn binding strength on ruminal digesta using dialysis against a chelating agent in steers fed a diet formulated to meet the requirements of a high producing dairy cow. Twelve Angus steers fitted with ruminal cannulae were adapted to a diet balanced with nutrient concentrations similar to a diet for a high producing lactating dairy cow for 21 d. Steers were then randomly assigned to dietary treatments consisting of 10 mg Cu, 40 mg Mn, and 60 mg Zn/kg DM from either sulfate (STM), hydroxychloride (HTM) or complexed trace minerals (CTM). The experimental design did not include a negative control (no supplemental Cu, Mn, or Zn) because the basal diet did not meet the National Research Council requirement for Cu and Zn. Copper, Mn, and Zn are also generally supplemented to lactating dairy cow diets at concentrations
    by O.Guimaraes on
  • Mineral and glycerol concentrations in water
    Situations in which cattle are feed-deprived over extensive periods of time are common in the context of transport and is an animal welfare concern which may also compromise growth and carcass yield grade. This study investigated how the main components of an oral rehydration solution would affect BW loss and blood parameters in feed-deprived bulls. Three dose–response experiments were performed with 24 bulls each (n = 6 per treatment) to study the effect of mineral concentration in Study I (0, 100, 200 and 300 mOsm/kg), the K+ to Na+ ratio in Study II (25:75, 40:60, 60:40 and 75:25), and glycerol concentration in Study III (0%, 1%, 2% and 4% of the final solution). The blocking factor was initial BW and treatments were randomly assigned within each block. Measurements included fluid intakes, BW, and blood parameters at 0, 24 and 48 h relative to the start of feed deprivation. In Study I, increasing mineral concentration in solution linearly decreased BW losses at 48 h. At 24 and 48 h, serum urea linearly decreased with increasing mineral concentration. At 48 h, blood K+ and Na+ linearly increased, resulting in increased blood osmolarity. Additionally, at 24 h feed deprivation, blood pH linearly increased with increasing osmolality. In Study II, BW losses decreased with i
    by J. N. Wilms on