A novel method of estimating milking interval-adjusted 24-h milk yields in dairy cattle milked in automated milking systems

Abstract

Irregular milking intervals in automated milking systems contribute to additional variation in daily milk yield records in comparison to those derived from systems using regular milking intervals. Various methods have been developed to estimate 24-h adjusted milk yields, though they are not well suited for the evaluation of serial milk yield data, particularly when milking intervals span calendar days. The objective of this study was to develop a methodology to estimate serial 24-h milk yields by adjusting for irregular milking intervals. Using data collected from an automated milking system (AMS), the total yield at a given milking event and the elapsed time from the previous entry into the AMS were used to calculate the milking interval and the average rate of milk secretion over that interval. Milking intervals and associated milk secretion rates were then realigned to calendar days to allow the proportional distribution of milk yield when milking intervals spanned more than one day. Using this method, variation in daily milk yield was decreased and adjusted estimates of 24-h milk yield were visually more similar to those typically observed in milking systems with regular milking intervals. Estimates of interval-adjusted milk yields were strongly correlated to those calculated using moving averages, suggesting that this method can yield comparable results to established methods for estimation of test-day milk yield.

Related articles

  • animal open space

    • Dairy
  • journal of animal science

    • Dairy
    High solubility of certain trace minerals (TM) in the rumen can alter nutrient digestibility and fermentation. The objectives of the present studies were to determine the effects of TM source on 1) nutrient digestibility and ruminal fermentation, 2) concentrations of soluble Cu, Zn, and Mn in the rumen following a pulse dose of TM, and 3) Cu, Zn, and Mn binding strength on ruminal digesta using dialysis against a chelating agent in steers fed a diet formulated to meet the requirements of a high producing dairy cow. Twelve Angus steers fitted with ruminal cannulae were adapted to a diet balanced with nutrient concentrations similar to a diet for a high producing lactating dairy cow for 21 d. Steers were then randomly assigned to dietary treatments consisting of 10 mg Cu, 40 mg Mn, and 60 mg Zn/kg DM from either sulfate (STM), hydroxychloride (HTM) or complexed trace minerals (CTM). The experimental design did not include a negative control (no supplemental Cu, Mn, or Zn) because the basal diet did not meet the National Research Council requirement for Cu and Zn. Copper, Mn, and Zn are also generally supplemented to lactating dairy cow diets at concentrations
    by O.Guimaraes on