

FeedTechnoVision – Questions and answers Session 2 & 3: Ernst Nef

Optimising process technology in times of grain and energy scarcity

Question	Answer
Do you think complete or significant	The adjustment depends very much on
replacement of soy protein and	physical properties, like particle size, bulk
fishmeal with alternative protein	density and moisture content of the
ingredients (single cell proteins and	alternative protein ingredients.
other low viscosity proteins) will be	However, such an adjustment should be
easily adjusted without process	possible without a major development in
technology development?	process technology.
How have you addressed the high	To gelatinize starch and denaturize protein
moisture needed to extrude the fish	high temperatures and high moisture
feed with soy protein ingredients? High	contents are required.
moisture needs to be dried in drying	Unfortunately, this results in an expensive
step utilized 60% of total heat energy.	drying process.
Globally, up to 30% of harvested raw	If storage is required, temperature in the silos
materials are wasted due to poor	must be controlled and especially in hot and
storage management. How can we	humid regions, aeration systems must be
improve raw material storage	available.
management?	Keep storage periods as short as possible.
During raw material shortage we can	In general beet molasses is lower and more
use low-cost raw materials by	unform in viscosity – hence the Brix value of
balancing nutritional contents, like sugar	beet molasses is slightly lower than for sugar
cane molasses. What is the difference	cane molasses.
between sugar cane molasses and beet	
molasses?	
What percentage of sugar cane	Please ask a nutritionist.
molasses is recommended per ton of	
feed for chicken layers and dairy cattle?	
Would different 'quality' of the same raw	Yes,
material perform differently during feed	
production?	

What should be the steam temperature just before injection in the conditioner?	Around 105 – 110 °C
Drying of extruded feed consumes significant amount of heat energy (60% of total). Have you thought about process optimization which allows low use of water in the extruder? Replacing water with alternative plasticizer?	Personally, I didn't think about an alternative plasticizer because extrusion is not my core business.
What is conditioning time, temperature and steam pressure?	In single conditioners, the conditioning time ranges around 10 – 15 seconds. In case of hygienizing, additional equipment like retentioners are required to reach rentention times up to 240 sec. Common secondary steam pressures are around 1.5 – 2.0 barG at a temperature of 5 – 10 °C above the saturated steam temperature.
Super-heated steam gives off heat less readily than saturated steam and takes more energy. Has research been done about this?	We are not looking for "super-super heated steam" we just want to be slightly (5-10°C) above the saturated steam temperature to ensure that there is no more water in the steam. Saturated steam shows in terms of pressure and temperature the same figures as wet steam.
What should be the actual temperature for the mixture inside the conditioner regardless of what is shown on the conditioner screen?	The final conditioning temperature is very much depending on the formulation. In general – the higher the conditioning temperature, the better the pellet quality, the lower the energy consumption. In case of a hygienizing process (poultry feed), temperatures above 80°C are recommended.

	1
Please explain addition of roller mill:	There are many roller mill suppliers. Common
what type of roller mill do you	is the application of a two stage roller mill
recommend?	with roll diameters of 250 or 400 mm and a
	roll length from 1'000 to approx. 2'000 mm.
	Recommended is a load controlled feeder
	unit with an integrated magnet separator.
Is the function of the roller mill to reduce	As shown in my slide, roller mill provide you a
the load on the grinder? Or can you	more uniform particle size distribution,
explain the advantage of introducing a	especially when it comes to layer feeds.
roller mill?	In addition they consume up to 30 % less
	energy and treat the product more gently.
	Means less heat generation and less
	moisture loss.
For which type of animals would you	Pelleted feed can be applied for almost any
recommend pellet feed?	livestock animal. However, most of layer
	feeds is produced in mash form.
We have experience with adding water	I believe there is further investigation
and surfactants, but no improvement in	required How about asking the supplier of
the final feed moisture. What could be	the surfactant for an explanation.
the reason(s) for this?	
Do you have advice on monitoring	Enzymes can be added in powder or liquid
enzyme activity and distribution along	form in to the main batch mixer. In this case a
the feed production process?	high mixing accuracy and a low carry over as
	well as segregation degree is of great
	importance.
	To minimize the destruction of enzymes,
	conditioning temperatures should not
	exceed 85°C.
	Often enzymes are added in post pelleting
	application systems (PPA). For a high
	accuracy, it is recommended to control the
	flow rate of the dry substance (pellets) by a
	gravimetric feeder unit.

	I
Which type of mixer is best: vertical or horizontal? What would be the required mixing time per ton of feed?	Basically, any renowned mixer type is able achieve a CV <5% within a certain mixing time. Most of vertical mixers ask for mixing times above 5 min, which is too long for an efficient industrial compound feed production. Therefore, horizontal mixers are commonly used. The mixing time is not defined per ton of feed, but is depending on the mixer model. The supplier of the mixer must be able to inform about the required mixing time for a specific model. State-of-the-art mixers ask for a mixing time of 1 – 2 minutes.
What do you recommend for the mixing time for a premix? After how much time would demixing occur?	The mixing time is always, whether for premixes or compound feed, related to the mixer model. Mixer suppliers must be able to inform about the required mixing time for a specific model. A de-mixing effect occurs at the moment the recommended mixing time have been exceeded. State-of-the-art mixers ask for a mixing time of 1 – 2 minutes.
What is your recommended mixing time for vitamins and minerals?	Mixing times are not related to specific additives, but to the mixer model. Mixer suppliers must be able to inform about the required mixing time for a specific model. State-of-the-art mixers ask for a mixing time of 1 – 2 minutes.
What do you recommend is the normal mixing time for premixing?	Mixing times are not related to premixes or compound feed, but to the mixer model. Mixer suppliers must be able to inform about the required mixing time for a specific model. State-of-the-art mixers ask for a mixing time of 1 – 2 minutes.

What do you mean by liquid addition in As shown on my slide, the mixi	•
the mixer, and please can you explain divided in three sections. Before	
the mixing cycle? addition a dry mixing time of a	
the total mixing time must be	considered.
Liquid addition supposed to be	e done within a
min. time of 20 – 30 sec and a	max. time of 50
– 60 sec. After liquid addition a	a wet mixing
time of at least 20 sec. or 1/3 of	f the total
mixing time is required.	
Dry mixing and wet mixing tim	ies, again are
depending on the mixer mode	əl.
What is the strategy, and what to do, to Queuing production runs, app	
optimize downtime of factory, especially process automation (e.g. use v	VSD on
when having to deal with different feed hammer mills), well maintaine	ed equipment
recipes or to accommodate urgent and teach customers to place	e orders in time.
orders from customers?	
What would you recommend: pre- or Nowadays, new installations a	ire in most
post-grinding system? cases designed as post grindi	ng plant. This
mainly due to lower investmen	nt cost and less
space requirements.	
We have a pre-grinder and suffer from The individual grinding of each	n single
its high cost. However, it is not feasible to component can be in terms of	f energy costs
change to a post-grinder. What can we a real disadvantage. Especial	y with difficult
do to optimize the operation of the pre- to grind raw materials (high fil	ore, fat and/or
grinder? moisture contents).	
Well maintained grinding equi	pment
contributes to a more efficient	t grinding
process.	
Particle size – Economical optimum: A d50 of 500 – 800 microns is a	an economical
Energy efficiency or best FCR? optimum for the feed product	ion process.
Is d50 – 600 – 800 microns still up to Means reasonable results (end	ergy/quality) in
date? the grinding- and pelleting see	ction. For broiler
5 5 1 5	

	microns are requested, resulting in general in
	a weaker pellet quality.
Is there any possibility to directly	Since crumbles are crushed pellets, the
produce crumbled feed instead of	answer is basically "no". However, there are
crushing pellet feed?	possibilities to produce structured feeds by
	the use of roller mills (e.g. layer feeds).
	Also products from expanders or boa
	compactors etc. can pass the crumbler
	without prior pelleting.
What is the main cause of pellets to	Pellets (commonly 4 mm) are crumbled to
crumble after manufacturing?	adapt the particle size to requirement of the
	animal. The alternative would be to produce
	directly a smaller pellet, which will have a
	negative effect to pellet mill throughput and
	energy consumption. Hence, pelleting and
	subsequent crumbling is more economical.
Can the feed mill be affected by the	Definitely – well educated production- and
operator? For example, can a less-	maintenance staff is the base for a
experienced operator reduce	successful production process.
production and vice versa?	
Does increasing moisture of feed lead to	Depends in which process section.
energy savings? How?	In the grinding process a moisture content
	above 12 – 13 % leads to much higher energy
	consumption. In the pelleting process a
	moisture content of approx. 15 – 17 % is
	recommended to save energy and produce
	good quality pellets.
How much energy can be saved with	Assuming that semi full grains not supposed
semi full grain mixing and bagging in	to be ground, the savings will be mainly in the
finished feed?	grinding section.
In high-temperature regions how much	In high temperature regions the moisture
water & oil can be added without	content in the finish product is limited to 12%.
compromising pellet quality if the mash	Therefore, the moisture content before
feed moisture ranges by 10%?	pelleting is limited to approx. 15 %, achieved

	by the addition of water and super heated steam. The fat content before pelleting depends very much on the required pellet quality – in general limited by about 4% of total fat content. For higher fat inclusions post pelleting application (PPA) must be taken into consideration.
Are there innovative techniques to preserve bulk feed quality in silo storage?	Are we talking about raw material or finish products ?? Temperature and moisture control are the most important parameters. Surfactants and /or mould inhibitors may be applied as a preservative.
Will dwell time (die length) not reduce expansion?	If I interpret your question correctly, it is a "no".
Can you suggest tips for any feed mill operation to reduce carbon foot print to help achieve sustainability goals?	I believe many of them, especially in energy savings, have been mentioned in my presentation.